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Abstract
Motivated by recent inelastic neutron scattering experiments we examine
the magnetic properties of LiV2O4. We consider a model which describes
the half-filled localized A1g spins interacting via frustrated antiferromagnetic
Heisenberg exchange and coupled by local Hund’s interactions with the 1/8-
filled itinerant Eg band and study it within an exact diagonalization scheme. In
the present study we limited the analysis to the case of the cluster of two isolated
tetrahedrons. We found that both the ground state structure and low-lying
excitations depend strongly on the value of Hund’s coupling, which favours the
triplet states. With increasing temperature the triplet states become more and
more populated, which results in the formation of non-zero residual magnetic
moment. We present the temperature dependence of the calculated magnetic
moment and of the spin–spin correlation functions at different values of Hund’s
coupling and compare them with the experimental results.

1. Introduction

In recent years, there has been a great deal of interest in the study of the origin of the heavy
fermion (HF) behaviour observed in the paramagnetic transition-metal oxide LiV2O4. This
compound has a spinel structure and its pyrochlore lattice consists of corner-shared tetrahedrons
of V3.5+ ions located in a slightly distorted oxygen octahedron. It is the first metal showing
heavy fermion behaviour without any f orbitals [1]. The electronic specific heat coefficient
γ = Ce/T = 0.42 J mol−1 K−2 at T = 1.0 K is the highest value measured for 3d transition-
metal oxides.

In addition to having quasi-particles with an unusually heavy effective mass, LiV2O4

has some peculiar magnetic properties. The magnetic susceptibility and inelastic neutron
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scattering measurements indicate a spin-liquid behaviour over a large range of intermediate
temperatures [2, 3]. The absence of magnetic order indicates that geometrical frustration,
due to the pyrochlore structure, is relevant in this system6. On the other hand, recent
neutron scattering experiments [4] reveal that, in addition to antiferromagnetic correlations,
ferromagnetic-like correlations on V sites appear over some temperature range. These
observations are inconsistent with the ‘classical’ spin-liquid picture and demonstrate that
the itinerant contribution of strongly correlated electrons, which could lead to the effective
ferromagnetic exchange interaction between localized spins, is also important.

There were some suggestions [9] to explain HF behaviour in LiV2O4 using an analogy
with 4f systems where these effects are attributed to the hybridization of localized 4f levels and
itinerant spd bands. This analogy has been based on the fact that, according to band structure
calculations [8, 5], the trigonal distortion splits t2g orbitals into singlet A1g and doublet Eg

states, and the centre of the A1g band lies lower than that of the Eg band. Therefore, one can
make a plausible assumption and treat the A1g level as being occupied by a localized electron,
while also considering the Eg doublet as a quarter-filled conducting band [5].

In this paper we study the magnetic properties of LiV2O4 within the exact diagonalization
analysis of a small cluster. The model that we consider includes both a purely Heisenberg-
like contribution from the super-exchange interaction among localized spins and an effective
ferromagnetic double-exchange contribution driven by the itinerant electronic excitations.

In order to capture some charge fluctuation of the system, we solve the model exactly for
the cluster consisting of two disconnected tetrahedrons with either 5 and 7 electrons, or only
with 6 electrons, projecting out higher energy states with 4 and 8 electrons.

2. The model

To consider some charge fluctuations, we study a cluster of two isolated tetrahedrons, i.e. we do
not take into account either the super-exchange interaction between localized spins of different
tetrahedrons or the hopping of electrons between them. For this cluster, we can write the total
Hamiltonian as H = H1 + H2, where H1(2) is defined on a single tetrahedron:

Ha =
∑

i j,αβσ

tαβ

i j [ca†
iσαca

jσβ + h.c.] − JH

∑

i

Sa
i σ

a
i + J

∑

i �= j

Sa
i Sa

j . (1)

Here a = 1, 2 is the tetrahedron’s index, Sa
i are 1

2 -spins representing the localized A1g electrons

and ca†
iσα (ca

jσβ) is the creation (annihilation) operator of an itinerant electron with spin σ =↑,↓
and orbital α = 1, 2, corresponding to the Eg-doublet.

The first term in the Hamiltonian equation (1) describes the electron hopping between
the nearest-neighbour V ions, tαβ

i j being the transfer amplitude. The second term concerns the
Hund coupling JH between the localized spins Si and the local spin density σi of the itinerant
Eg electrons. Finally, the last term describes the nearest-neighbour antiferromagnetic super-
exchange interaction J between localized spins. Here we consider infinite on-site Coulomb
repulsion between itinerant electrons and project out states with double occupancy.

Considering only direct overlap between 3d wavefunctions [(ddσ) = −0.281 eV,
(ddπ) = 0.0076 eV] [6], transfer matrix elements tαβ

i j can be easily calculated using table 1
of the paper by Slater and Koster [7].

In further analysis, we consider the value of the Heisenberg exchange coupling J =
10 meV which is in agreement with the estimates given in the literature [10, 12]. Hund’s

6 The theoretical study of the role of the geometrical frustration in LiV2O4 has been performed by many authors (see,
for example, [10–12]).
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coupling JH is known to be little screened in solids and can be simply related to its atomic
value. The estimates reported in the literature suggest that JH = 0.68–1.0 eV [13, 14, 5, 16].
We use in our study the value JH = 0.8 eV obtained by LDA + U ab initio calculations [5].
However, we also consider the variation of JH over a wider range.

2.1. Hilbert space sectors

To define the Hilbert space, we choose a basis in which each state |n〉 is a product:

|n〉 = |N2,S2, α2〉2 ⊗ |N1,S1, α1〉1, (2)

where the state | · · ·〉a characterizes the tetrahedron a = 1, 2. The index Na is the number of
electrons (localized plus itinerant) for the tetrahedron a, with an average charge of 6 electrons
per tetrahedron N1 + N2 = 12. For a given tetrahedron, the spin state Sa ≡ ∑4

i=1 Sa
i

characterizes the total spin of the four localized electrons. These four spins can be coupled
either to singlet, triplet or quintet states. If Hund coupling is neglected, considering only
the antiferromagnetic super-exchange interaction, the ground state consists of a two-fold-
degenerate singlet with energy −3 J, followed by nine-fold-degenerate triplet states and five
quintet states with energy 3 J. The quantum number αa describes all the remaining degrees of
freedom: in our case, the spin state, the orbital and site occupancy of the itinerant electrons
on the tetrahedron considered.

In order to calculate both the ground state and the finite-temperature properties of the
cluster of two isolated tetrahedrons, first we performed a numerical exact diagonalization of
the Hamiltonian H1 characterizing one tetrahedron. Because of large degeneracy, the Hilbert
space of one tetrahedron consists of 256, 1536 and 4096 states for 5, 6 and 7 electrons,
respectively. However, since the Hamiltonian is invariant under rotation of the total spin, it is
also diagonal by blocks in the basis of the eigenstates of the total spin (itinerant plus localized).

2.2. Probabilities

For a given temperature T ≡ 1/β, the average value of an operator � (e.g. the nearest
neighbours’ spin–spin correlation) is defined by the usual relation

〈�〉 = 1

Z
∑

n

〈n| exp(−β H )�|n〉. (3)

Choosing a basis diagonalizing either the operator � or the Hamiltonian, this relation can be
rewritten as

〈�〉 =
∑

n

p(n, T )〈n|�|n〉. (4)

Here, the density matrix p(n, T ) ≡ 1
Z 〈n| exp(−β H )|n〉 is the probability for the state |n〉 to

be occupied at temperature T . Using the definition (2) of the state |n〉 of the cluster of two
isolated tetrahedrons, the probability P(N,S) that the tetrahedron 1 occupies a state with N
electrons and a local spin state S is

P(N,S) = 1

Z
∑

α1,α2,S2

〈N,S, α1|〈12 − N,S2, α2| exp (−β H )|12 − N,S2, α2〉|N,S, α1〉

= Z12−N

Z
∑

α1

〈N,S, α1| exp (−β H1)|N,S, α1〉, (5)
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Figure 1. (a) Ground state spin probabilities at different values of Hund’s coupling JH. (b) Charge
probabilities at temperatures T = 0.1, 0.3 and 1.0 eV for JH = 0.8 eV. (c) and (d) Spin probabilities
at temperatures T = 2, 10 and 50 meV for JH = 0.0 and 0.8 eV, respectively.

where the partition function for one isolated tetrahedron with N = 5, 6 or 7 electrons is defined
as ZN ≡ ∑

S,α〈N,S, α| exp(−β H1)|N,S, α〉. The partition function of the two-tetrahedron
system can be cast as

Z = Z5Z7 + Z6Z6 + Z7Z5. (6)

For further analysis, it is convenient also to define the probability that the tetrahedron 1 occupies
a state with a total local spin S:

Pspin(S) =
∑

N

P(N,S), (7)

and the probability to occupy a state with N electrons:

Pcharge(N) =
∑

S
P(N,S). (8)

3. Results and discussion

3.1. Low energy states

First, let us discuss the weight of the different spin subsectors in the ground state. Figure 1(a)
illustrates the spin probabilities P(N = 6,S) for T = 0 and different values of Hund’s
coupling. At JH = 0.0 eV (decoupled spins and conducting electrons), the ground state is a
two-fold-degenerate singlet. As soon as Hund’s coupling is switched on, the spin degeneracy
of the ground state is lifted and some triplet components occur. The weight of the triplet states
is more than 20% for a realistic coupling JH = 0.8 eV, but the singlet components remain
important even for much larger coupling JH = 2.0 eV. For the three values of coupling that
we considered, the quintet contributions to the ground state are negligible. In figure 1(a) we
present only the probabilities of states corresponding to the tetrahedron with N = 6 electrons
because the states with 5 and 7 electrons are higher in energy and, therefore, all the probabilities
P(5,S) and P(7,S) are equal to zero. At low temperatures, as in the ground state, mainly the
states with N = 6 electrons are occupied. The charge sectors with N = 5 and 7 contribute
only at rather high temperatures. In figure 1(b) the temperature evolutions of Pcharge(N) are
presented for JH = 0.8 eV. However, we should note that only static charge fluctuations are
taken into account here, and considering interacting tetrahedrons would certainly increase the
contribution of charge fluctuations at low temperatures.
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Figure 2. The temperature dependence of (a) the specific heat Ce and (b) the coefficient γ = Ce/T .
On both (a) and (b), the temperature axis is logarithmic.

The evolution of the spin probabilities Pspin(S) with increasing temperature is presented
in figures 1(c) and (d) for JH = 0.0 and 0.8 eV, respectively. The weights of the triplet states
become substantial at T � 10 meV and the spin probabilities are mainly proportional to the
spin degeneracies at T � 50 meV.

To conclude the description of the low energy excitations, let us discuss the
thermodynamical properties such as the electronic specific heat Ce and the coefficient
γ = Ce/T . In figures 2(a) and (b) we present the temperature dependence of Ce and γ ,
respectively. For all values of Hund’s coupling, the specific heat has three peaks at finite
temperatures. Two low-energy peaks correspond to spin excitations. For a non-zero Hund’s
coupling, the energies of the magnetic states are decreased and the corresponding peak occurs
at a lower temperature. The third and highest temperature peak characterizes the charge sector
excitations and it is independent of the Hund coupling.

3.2. Local moment and magnetic correlation functions

We discuss now the temperature dependence of the spin correlation functions at different values
of Hund’s coupling. We denote as Stot

i = Si + σi the total spin at a given V ion. In figure 3(a),
we plot the nearest-neighbour spin correlation function 〈Stot

1z Stot
2z 〉. At low temperatures the

correlations are antiferromagnetic for the three values of JH considered. When the temperature
is increased the correlations change from antiferro- to ferro-type at a temperature T ∼ 30 meV
for JH = 0.8 and 2.0 eV, whereas it is always antiferromagnetic for JH = 0.0 eV. To emphasize
the role of the itinerant electrons, we plot on the inset of figure 3(a) the nearest-neighbour
correlation functions 〈S1z S2z〉 of the localized spins only, which remain antiferromagnetic at
any temperature and JH.

This observation is in qualitative agreement with the inelastic neutron scattering
measurements of Murani et al [4] where the correlations are antiferromagnetic (with a
wavevector around Q = 0.6 Å−1) below T ≈ 2 K and develop ferromagnetic-like correlations
(corresponding to a peak at Q = 0) with increasing temperature. A possible interpretation of
these data could be the following: at low temperatures the ferromagnetic exchange, induced
by the itinerant electrons due to the double-exchange mechanism [15], is weaker than the
direct antiferromagnetic exchange and the resulting correlations are antiferromagnetic. With
increasing temperature, carriers become more mobile and, as a consequence, the effective
ferromagnetic exchange grows. In figure 3(b) we present the local effective moment per
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Figure 3. (a) Temperature dependence of the total spin nearest-neighbour correlation functions.
The inset shows, for comparison, the correlations of only the localized spins. (b) Temperature
dependence of the local magnetic moment. On both (a) and (b), the temperature axis is logarithmic.

site, which is defined as: meff(meff + 1) ≡ 〈(∑i Stot
i )2〉/4. At JH = 0.0 eV, when the

localized spins are completely decoupled from the itinerant electrons, the magnetic moment
is determined only by the localized spins. At zero temperature, the ground state is a singlet
and the magnetic moment is zero. With increasing temperature low lying triplet states become
thermally populated and this causes the formation of the local moment. At high temperature
the obtained value of 0.67 corresponds to a paramagnetic moment of 1.5 electrons on average
for a V ion.

At JH = 0.8 and 2.0 eV, the ground state has some triplet components but the weight of the
singlet is still important. As a consequence, the effective moment is small at low temperature.

Finally, we calculated the static magnetic susceptibility, defined as χ(T ) = 〈(Sz
tot)

2〉/T .
At high temperature, for all values of Hund’s coupling the inverse susceptibilities show linear
behaviour, corresponding to a Curie–Weiss law. The Curie–Weiss temperatures extrapolated
from high temperatures (T � 500–1000 K) are θ = −551, −475 and −360 K for JH = 0, 0.8
and 2.0 eV, respectively. A detailed analysis of the magnetic susceptibility measurements [1]
gives θCW ≈ −37 K when the fit is performed over the range T � 100–300 K, but it gives
θ � −600 K if fitted over the range T � 500–1000 K. This latter value is of the same order as
the one we have calculated and we guess that the corresponding range of temperatures is such
that the correlations between tetrahedrons are negligible. According to our calculations, this
temperature does mainly characterize the spin correlations but in the charge sectors N = 5
and 7. The value θCW ≈ −37 K, fitted at lower temperatures, would be more characteristic of
spin correlations in the N = 6 charge sector.

4. Conclusion

We have performed an exact diagonalization of the small cluster,consisting of two disconnected
tetrahedrons. The size of the cluster, constraint on the number of electrons and no exchange
between two tetrahedrons gives us the possibility to make some qualitative descriptions of the
system, its spectrum and magnetic behaviour.

We find that the ground state is a two-fold-degenerate singlet when the contribution from
the itinerant electrons is not considered. The degeneracy is lifted and some important triplet
components appear when the itinerant electrons are coupled to the localized spins by Hund’s
exchange interaction with a realistic value. Consistent with experimental observations [4],
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the temperature dependence of the spin correlation function shows a crossover from
antiferromagnetic to ferromagnetic behaviour when the temperature is increased. The
increasing population of the magnetic states with temperature results in the formation of a
non-zero residual magnetic moment which is also observed in experiment.
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